Quantum Computations and Unitary Matrix Decompositions

Stephen S. Bullock

Mathematical and Computational Sciences Division
Information Technology Lab
National Institute of Standards and Technology

Outline

- I. Quantum Data and Quantum Computation
- II. Quantum Circuits Using *QR* and Cosine-Sine
- III. Two-qubit Circuits and the Canonical Decomposition
- IV. On-Going Work (Generalized Canonical Decompositions)

Quantum Computing

- replace bit with qubit: two state quantum system, states $|0\rangle$, $|1\rangle$
- quantum data states obey axioms of quantum mechanices
 - Single qubit state space $\mathcal{H}_1 = \mathbb{C}|0\rangle \oplus \mathbb{C}|1\rangle \cong \mathbb{C}^2$
 - $|\psi\rangle = |0\rangle + i|1\rangle$
 - n-qubit state space $\mathcal{H}_n = \bigotimes_1^n \mathcal{H}_1 = \bigoplus_{\bar{b} \text{ an } n} \text{ bit string} \mathbb{C}|\bar{b}\rangle \cong \mathbb{C}^{2^n}$
 - two-qubit example: $|\psi\rangle = |00\rangle + |11\rangle$
 - * Both qubits in same state; equal chance of 0, 1

Quantum Computing Cont.

- density matrix ρ : Hermitian matrix describing stochastic dispersion of pure states $|\psi\rangle$
 - Choice of diagonalizations specifies mixture
 - For $\vec{x} = |\psi\rangle$ pure, unmixed density matrix is $\rho = |\psi\rangle\langle\psi| = x\bar{x}^t = xx^*$
 - All states pure for rest of talk
- quantum computations: apply $2^n \times 2^n$ unitary matrix u to n-qubit data strings, i.e. $\vec{x} \mapsto u\vec{x}$

Thm: ('93, Bernstein-Vazirani) The Deutsch-Jozsa algorithm proves quantum computers would violate the Church-Turing hypothesis.

Example: \mathcal{F} the Two-Qubit Fourier Transform in $\mathbb{Z}/4\mathbb{Z}$

• Relabelling $|00\rangle, \dots |11\rangle$ as $|0\rangle, \dots, |3\rangle$, the discrete Fourier transform \mathcal{F} :

$$|j\rangle \xrightarrow{\mathcal{F}} \frac{1}{2} \sum_{k=0}^{3} (\sqrt{-1})^{jk} |k\rangle \quad \text{or} \quad \mathcal{F} = \frac{1}{2} \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & i & -1 & -i \\ 1 & -1 & 1 & -1 \\ 1 & -i & -1 & i \end{pmatrix}$$

• one-qubit unitaries: $H=(1/\sqrt{2})\left(\begin{array}{cc} 1 & 1 \\ 1 & -1 \end{array}\right)$, $S=(1/\sqrt{2})\left(\begin{array}{cc} 1 & 0 \\ 0 & i \end{array}\right)$

$$\mathcal{F} = \begin{array}{c} -H \\ \hline \end{array}$$

Tensor (Kronecker) Products of Data, Computations

- $|\phi\rangle = |0\rangle + i|1\rangle, |\psi\rangle = |0\rangle |1\rangle \in \mathcal{H}_1$
 - interpret $|10\rangle = |1\rangle \otimes |0\rangle$ etc.
 - composite state in \mathcal{H}_2 : $|\phi\rangle \otimes |\psi\rangle = |00\rangle |01\rangle + i|10\rangle i|11\rangle$
- Most two-qubit states are not tensors of one-qubit states.
- If $A = \begin{pmatrix} \alpha & -\beta \\ \bar{\beta} & \bar{\alpha} \end{pmatrix}$ is one-qubit, B one-qubit, then the two-qubit tensor $A \otimes B$ is $(A \otimes B) = \begin{pmatrix} \alpha B & -\beta B \\ \bar{\beta} B & \bar{\alpha} B \end{pmatrix}$. Most 4×4 unitary u are not local.

Quantum Circuits

- Quantum computation complexity ~ size of quantum circuit
- Typical choices of gates
 - Any two-qubit
 - one-qubit, and CNOTS $(|b_1b_2\rangle \mapsto |b_1(b_1\oplus b_2)\rangle)$, $(|b_1b_2\rangle \mapsto |(b_1\oplus b_2)b_2\rangle)$

Quantum Circuits Cont.

• For $X = NOT = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, sample quantum circuit:

$$u = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$
 is implemented by
$$\begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \end{array} \\ \end{array}$$

• good quantum circuit design: find tensor factors of computation u

Outline

- I. Quantum Data and Quantum Computation
- II. Quantum Circuits Using *QR* and Cosine-Sine
- III. Two-qubit Circuits and the Canonical Decomposition
- IV. On-Going Work (Generalized Canonical Decompositions)

Circuit Synthesis by QR Decomposition

- universality argument(1995): circuits for arbitrary u
- observation (2000): argument implements *QR* decomposition
 - In general, m = qr, with q unitary, r upper-triangular
 - q is made of Givens rotations
 - m unitary demands $r = q^*m$ unitary, i.e. r diagonal
- two-qubit Givens rotation: $G_{10,11}$ acts on $|10\rangle$ and $|11\rangle$ by 2×2 matrix v

QR reduction of 4×4 unitary

$$\begin{pmatrix} * & * & * & * & * \\ * & * & * & * & * \\ 0 & * & * & * & * \\ 0 & * & * & * & * \end{pmatrix} \xrightarrow{G_{10,11}} \begin{pmatrix} * & * & * & * & * \\ * & * & * & * & * \\ 0 & * & * & * & * \\ 0 & 0 & * & * & * \end{pmatrix} \xrightarrow{G_{00,01}}$$

$$\begin{pmatrix} * & * & * & * \\ 0 & * & * & * \\ 0 & * & * & * \\ 0 & 0 & * & * \end{pmatrix} G_{10,11} \circ G_{01,10} \begin{pmatrix} * & * & * & * \\ 0 & * & * & * \\ 0 & 0 & * & * \\ 0 & 0 & 0 & * \end{pmatrix}$$

Circuits for Givens Rotations

• Barenco et al.: $G_{10,11} = 2$ CNOTS + 4 (variable) one-qubit gates

- a,b,c and d are computed from v
- Givens rotation $G_{01,10}$ on $|00\rangle$, $|01\rangle$ is the conjugation of $G_{10,11}$ by $X \otimes 1$

$$G_{00,01} = (X \otimes \mathbf{1})(\text{topC-}v)(X \otimes \mathbf{1}) = \begin{pmatrix} v & 0 \\ 0 & \mathbf{1} \end{pmatrix}$$

Summary of *QR* **Circuit Synthesis**

- Breakthrough: Every unitary u possesses a quantum circuit.
- Roughly, Givens rotations build circuit entry by entry.
- This design philosophy often ignores underlying structure.
- General philosophy recurs in circuit design:
 - Choose matrix decomposition
 - Produce circuits factorwise

Cosine-Sine Decomposition

Cosine-Sine Decomposition factors a $2^n \times 2^n$ unitary u:

$$u = \begin{pmatrix} v_1 & 0 \\ 0 & v_2 \end{pmatrix} \begin{pmatrix} c & s \\ -s & c \end{pmatrix} \begin{pmatrix} v_3 & 0 \\ 0 & v_4 \end{pmatrix}$$

- v_1, v_2, v_3, v_4 are $(2^n/2) \times (2^n/2)$ unitary
- $c = \operatorname{diagonal}(\cos t_0, \cos t_1, \cdots \cos t_{2^n/2-1})$
- $s = \operatorname{diagonal}(\sin t_0, \sin t_1, \cdots \sin t_{2^n/2-1})$

Remark: Decomposition of unitary matrix, not arbitrary matrix

More structure?

Cosine-Sine Decomposition Cont.

$$\begin{pmatrix} v_1 & 0 \\ 0 & v_2 \end{pmatrix} = \begin{pmatrix} v_1 & 0 \\ 0 & v_1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & v_1^* v_2 \end{pmatrix} = \begin{bmatrix} v_1 \\ v_1^* v_2 \end{bmatrix}$$

- Side matrices of **C.S.D.** do not change top qubit
- Good choice (?) when measurement of single qubit is output
- q-ph/0303039 (B-,Markov): Circuit for cosine-sine matrix

Outline

- I. Quantum Data and Quantum Computation
- II. Quantum Circuits Using QR and Cosine-Sine
- III. Two-qubit Circuits and the Canonical Decomposition
- IV. On-Going Work (Generalized Canonical Decompositions)

The Magic Basis of Two-Qubit State Space

The magic basis of phase shifted Bell states is

$$\begin{cases} |\mathsf{m}1\rangle &= (|00\rangle + |11\rangle)/\sqrt{2} \\ |\mathsf{m}2\rangle &= (i|00\rangle - i|11\rangle)/\sqrt{2} \\ |\mathsf{m}3\rangle &= (i|01\rangle + i|10\rangle)/\sqrt{2} \\ |\mathsf{m}4\rangle &= (|01\rangle - |10\rangle)/\sqrt{2} \end{cases}$$

These are maximally-entangled states. Global phases are important.

Theorem (Lewenstein, Kraus, Horodecki, Cirac 2001) Consider a two-qubit computation U with det(U) = 1

- Compute matrix elements in the magic basis
- (All matrix elements are real) \iff $(U = A \otimes B)$

The Two-Bit Entangler

Entangler unitary E takes computational basis to the magic basis:

$$|00\rangle \mapsto |m1\rangle, |01\rangle \mapsto |m2\rangle, |10\rangle \mapsto |m3\rangle, |11\rangle \mapsto |m4\rangle$$

$$E = \frac{\sqrt{2}}{2} \begin{pmatrix} 1 & i & 0 & 0 \\ 0 & 0 & i & 1 \\ 0 & 0 & i & -1 \\ 1 & -i & 0 & 0 \end{pmatrix}$$

Corollary Consider u 4x unitary, det u = 1. Then

 $(u = A \otimes B) \iff (EuE^* \text{ is real orthogonal})$

An Example of the Isomorphism

We choose some orthogonal u, det(u) = 1.

$$u = \frac{\sqrt{2}}{2} \left(\begin{array}{cccc} 1 & 0 & 0 & 1 \\ 0 & 1 & -1 & 0 \\ 0 & 1 & 1 & 0 \\ -1 & 0 & 0 & 1 \end{array} \right)$$

Then EUE^* is a tensor of one-qubit computations:

$$EuE^* = \frac{\sqrt{2}}{2} \begin{pmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & -1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{pmatrix} = \frac{\sqrt{2}}{2} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} \otimes \mathbf{1}$$

Column by column, this amounts to application of the magic basis.

Two-Qubit Canonical Decomposition

Two-Qubit Canonical Decomposition: Any u a four by four unitary admits a matrix decomposition of the following form:

$$u = (b \otimes c)a(d \otimes f)$$

for $b \otimes c, d \otimes f$ are tensors of one-qubit computations and $a = EdE^*$ for a diagonal matrix $d = \sum_{j=00}^{11} \mathrm{e}^{i\theta_j} |j\rangle\langle j|$, $\det d = 1$.

Note that *a* applies relative phases (complex multiples) to the magic basis.

Circuit diagram: For any u a two-qubit computation, we have:

Applications of the Canonical Decomposition

Two-qubit Circuit Design: [(F.Vatan, Colin Williams), (G.Vidal, C.Dawson), (V.Shende, I.Markov, B-)]

- Choose a universal gate library
- In two-qubits, provably optimal or near optimal circuits
 - Implement $b \otimes c$, $d \otimes f$ as tensor
 - Choose method for circuit for a

Entanglement Capacities: (J. Zhang, J. Vala, S. Sastry, KB Whaley) Only a block may entangle $|\psi\rangle$; other factors are local.

Quantum Circuit Structure: (V.Shende, B-, I.Markov) Recognize *u* with particularly simple circuits; produce circuits with special case *a*

Computing the Canonical Decomposition

Step #1: Compute the unitary SVD of v unitary:

 $v = o_1 do_2$, d diagonal, o_1, o_2 real orthogonal

Due to a theorem, this decomposition exists.

Step 1a: Suppose $v = o_1 do_2$, and label $p = o_1 do_1^t$. Then $v = p(o_1 o_2)$ and $p = p^t$, p unitary. Moreover, we may compute $p^2 = vv^t = o_1 d^2 o_1^t$.

Remark: For $p^2 = a + ib$, $1 = p^2(p^*)^2 = (a + ib)(a - ib) = (a^2 - b^2) + i(ba - ab)$. Thus the real and imaginary parts of p^2 are real symmetric matrices that commute, hence o_1 exists.

Computing the Canonical Decomposition Cont.

Step 1b: Diagonalize to find d^2 . Write $p = o_1 do_2^t$, with determinants of o_1 and d both one.

Step 1c: Then $v = (o_1 do_1^t)(o_1 o_2)$ for $o_2 = o_1^t p^* v$.

Step #2: Canonical decomposition results by translation through entanglers. If $E^*vE = o_1do_2$, then

$$v = (Eo_1E^*)(EdE^*)(Eo_2E^*) = (b \otimes c)a(d \otimes f)$$

WARNING! Entanglers do not function properly on inputs with det $\neq 1$.

Outline

- I. Quantum Data and Quantum Computation
- II. Quantum Circuits Using QR and Cosine-Sine
- III. Two-qubit Circuits and the Canonical Decomposition
- IV. On-Going Work (Generalized Canonical Decompositions)

Entanglement Monotones

- Entangled $|\psi\rangle$: any non-local $|\psi\rangle$, i.e. not tensor (Kronecker) product
- Entanglement monotone: functions that measure how far away a state $|\psi\rangle$ is from local (full Kronecker product)
- ullet Monotones usually map to [0,1], must return 0 on local states, may return zero on nonlocal states.
 - only detect certain entanglement types
 - types thought to grow exponentially with n

Concurrence

- concurrence entanglement monotone: $-iY = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$, with $S = \bigotimes_{1}^{n} (-iY)$ a $2^{n} \times 2^{n}$ complex matrix. For $\vec{x} = |\psi\rangle$, we have $C_{n}(|\psi\rangle) = |x^{t}Sx|$.
- $S = \bigotimes_{1}^{n}(-iY)$ is antidiagonal, $S^{t} = S^{-1} = (-1)^{n}S$
- 4-qubit examples
 - maximal 1 on $|GHZ\rangle = (1/\sqrt{2})(|00\cdots0\rangle + |11\cdots1\rangle)$
 - vanishes on entangled $|W\rangle = (1/4)(|0001\rangle + |0010\rangle + |0100\rangle + |1000\rangle)$

Concurrence Form

Definition: The concurrence bilinear form $C_n : \mathcal{H}_n \times \mathcal{H}_n \to \mathbb{C}$ is given by $C_n(\vec{x}, \vec{w}) = \vec{x}^t S \vec{w}$.

Remark: So $C_n(\vec{x}) = |C_n(\vec{x}, \vec{x})|$.

2-qubits:
$$C_2(\vec{x}, \vec{w}) = \begin{pmatrix} x_1 & x_2 & x_3 & x_4 \end{pmatrix} \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & -1 & 0 \\ 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} w_1 \\ w_2 \\ w_3 \\ w_4 \end{pmatrix}$$

Generalized Entanglers

4-qubit entangler:

Concurrence Canonical Decomposition

Theorem (B-, Brennen) Let v be a $2^n \times 2^n$ unitary, n even. Then $v = k_1 a k_2$ where the factors have the following properties.

- $k_j = E_0 o_j E_0^*$, where o_j orthogonal, j = 1, 2
- $k_j^t S k_j = S$, i.e. $C_n(k\vec{x}, k\vec{w}) = C_n(\vec{x}, \vec{w}) \ \forall \vec{x}, \vec{w} \ \text{in } n\text{-qubit data space } \mathcal{H}_n$
- For a diagonal d, the central factor $a = E_0 dE_0^*$ applies relative phases to the concurrence-one columns of E_0

Algorithm: Computable in same manner as two-qubit canonical decomposition. Given scaling of matrix sizes, numerical issues arise in ≥ 12 qubits.

Application: Concurrence Capacity

Definition: The concurrence capacity of a given n-qubit quantum computation v is defined by $\kappa(v) = \max\{C_n(v|\psi)\}$; $C_n(|\psi\rangle) = 0, \langle \psi|\psi\rangle = 1\}$.

Corollary: Let $u = k_1 a k_2$ be the concurrence canonical decomposition of some $2^n \times 2^n$ unitary u. Then $\kappa(u) = \kappa(a)$.

- Calculation: For n = 2p, most a have $\kappa(a) = 1$ as $p \to \infty$.
- Conclusion: Most large unitaries are arbitrarily entangling with respect to the (single) entanglement monotone C_n .

On-going Work

- Most large u in even qubits carry some $|\psi\rangle$ of concurrence 0 to $u|\psi\rangle$ of concurrence 1.
 - Compute numerical examples?
 - How entangled are such $|\psi\rangle$ with respect to other monotones?
- Do the factors have reasonable quantum circuits?
- Odd n: a decomposition exists, do not know algorithm to compute it.
- Analyze particular u from well-known quantum algorithms

Ongoing Work: Numerical Issues

- Algorithm for (n = 2p)-qubit canonical is similar to n = 2
 - Diagonalize commuting real $2^n \times 2^n$ matrices a, b, with same orthogonal matrix o
 - Otherwise several matrix multiplications
 - 60-qubits: can't distinguish 2^{60} eigenvalues with 16 digits
- *n*-odd: complicated decomposition exists, no algorithm